方差及常见分布的方差计算与推导

2025-12-07 21:53:13

文章目录

1. 方差定义2. 方差性质3. 常见随机变量分布的方差3.1

(

0

1

)

(0-1)

(0−1)分布3.2 二项分布3.3 泊松分布3.4 几何分布3.5 超几何分布3.6 均匀分布3.7 指数分布3.8 正态分布3.9 常见分布的方差和期望汇总表

1. 方差定义

引言

我们知道,数学期望表示随机变量的平均值,例如,有一批灯泡,其平均寿命是

E

(

X

)

=

1000

E(X)=1000

E(X)=1000(小时),但是仅有这一项指标并不能知道这批灯泡质量的好坏,如有可能大部分的寿命在

950

1050

950\sim1050

950∼1050之间,也有可能其中约一半是高质量的,寿命可能在

1300

1300

1300小时左右,其余的则质量较差,寿命约只有

700

700

700小时,因此,研究随机变量与其平均值的偏离程度是十分必要的,为了度量这个偏离程度,我们很容易想到

E

{

X

E

(

X

)

}

E\{|X-E(X)|\}

E{∣X−E(X)∣} .由于该式中带有绝对值,运算不便,且有些时候绝对值不可导,不方便进行研究,因此,我们用

E

{

[

X

E

(

X

)

]

2

}

E\{[X-E(X)]^2\}

E{[X−E(X)]2} 来度量随机变量

X

X

X与其均值

E

(

X

)

E(X)

E(X)的偏离程度。

定义

X

X

X是一个随机变量,若

E

{

[

X

E

(

X

)

]

2

}

E\{[X-E(X)]^2\}

E{[X−E(X)]2}存在,则称

E

{

[

X

E

(

X

)

]

2

}

E\{[X-E(X)]^2\}

E{[X−E(X)]2} 为

X

X

X的方差. 记为

D

(

X

)

D(X)

D(X)或

V

a

r

(

X

)

V_{ar}(X)

Var​(X),即

D

(

X

)

=

V

a

r

(

X

)

=

E

{

[

X

E

(

X

)

]

2

}

D(X)=V_{ar}(X)=E\{[X-E(X)]^2\}

D(X)=Var​(X)=E{[X−E(X)]2}

在应用上还引入量

D

(

X

)

\sqrt{D(X)}

D(X)

​,记为

σ

(

X

)

\sigma(X)

σ(X),称为标准差或均方差

实际上,根据方差的定义,方差和均值是有一个单位的问题的,如引言中灯泡的寿命,期望的单位为‘小时’,方差的单位为‘小时的平方’,引入标准差之后,标准差的单位则和期望的单位就保持一致了.

由定义可知,方差其实是随机变量

X

X

X的函数

g

(

X

)

=

[

X

E

(

X

)

]

2

g(X)=[X-E(X)]^2

g(X)=[X−E(X)]2的数学期望,因此

对于离散型随机变量,有

D

(

X

)

=

k

=

1

[

x

k

E

(

X

)

]

2

p

k

,

D(X)=\sum\limits_{k=1}^{\infty}[x_k-E(X)]^2p_k,

D(X)=k=1∑∞​[xk​−E(X)]2pk​, 其中

P

{

X

=

x

k

}

=

p

k

,

k

=

1

,

2

,

P\{X=x_k\}=p_k,\quad k=1,2,\cdots

P{X=xk​}=pk​,k=1,2,⋯ 是

X

X

X的分布律对于连续型随机变量,有

D

(

X

)

=

+

[

x

k

E

(

X

)

]

2

f

(

x

)

d

x

,

\begin{aligned} D(X)=\int_{-\infty}^{+\infty}[x_k-E(X)]^2f(x)dx \end{aligned},

D(X)=∫−∞+∞​[xk​−E(X)]2f(x)dx​, 其中

f

(

x

)

f(x)

f(x) 是

X

X

X的概率密度。 在实际计算方差中,我们往往使用

D

(

X

)

=

E

(

X

2

)

[

E

(

X

)

]

2

.

D(X)=E(X^2)-[E(X)]^2.

D(X)=E(X2)−[E(X)]2.

证明:

D

(

X

)

=

E

{

[

X

E

(

X

)

]

2

}

=

E

{

X

2

2

X

E

(

X

)

+

[

E

(

X

)

]

2

}

=

E

(

X

2

)

2

E

(

X

)

E

(

X

)

+

[

E

(

X

)

]

2

=

E

(

X

2

)

[

E

(

X

)

]

2

\quad\begin{aligned} D(X)&=E\{[X-E(X)]^2\} = E\{X^2-2XE(X)+[E(X)]^2\} \\&= E(X^2)-2E(X)E(X)+[E(X)]^2\\&=E(X^2)-[E(X)]^2 \end{aligned}

D(X)​=E{[X−E(X)]2}=E{X2−2XE(X)+[E(X)]2}=E(X2)−2E(X)E(X)+[E(X)]2=E(X2)−[E(X)]2​

标准化

设随机变量

X

X

X具有数学期望

E

(

X

)

=

μ

E(X)=\mu

E(X)=μ,方差

D

(

X

)

=

σ

2

0

D(X)=\sigma^2\neq0

D(X)=σ2​=0 ,记

X

=

X

μ

σ

X^*=\frac{X-\mu}{\sigma}

X∗=σX−μ​ , 则其期望为

E

(

X

)

=

E

(

X

μ

σ

)

=

E

(

X

)

E

(

μ

)

E

(

σ

)

=

μ

μ

σ

=

0.

\begin{aligned} E(X^*) = E(\frac{X-\mu}{\sigma}) = \frac{E(X)-E(\mu)}{E(\sigma)} = \frac{\mu-\mu}{\sigma} = 0 .\end{aligned}

E(X∗)=E(σX−μ​)=E(σ)E(X)−E(μ)​=σμ−μ​=0.​ 方差为

D

(

X

)

=

E

(

X

μ

σ

)

2

=

E

(

X

μ

)

2

σ

2

=

E

(

X

2

)

+

E

(

μ

2

)

2

E

(

X

)

E

(

μ

)

σ

=

E

(

X

2

)

μ

2

σ

2

=

E

(

X

2

)

[

E

(

X

)

]

2

σ

2

=

D

(

X

)

σ

2

=

σ

2

σ

2

=

1.

\begin{aligned} D(X^*) &= E(\frac{X-\mu}{\sigma})^2 = \frac{E(X-\mu)^2}{\sigma^2} = \frac{E(X^2)+E(\mu^2)-2E(X)E(\mu)}{\sigma} \\&= \frac{E(X^2)-\mu^2}{\sigma^2} = \frac{E(X^2)-[E(X)]^2} {\sigma^2} \\&=\frac{D(X)}{\sigma^2} = \frac{\sigma^2}{\sigma^2} = 1.\end{aligned}

D(X∗)​=E(σX−μ​)2=σ2E(X−μ)2​=σE(X2)+E(μ2)−2E(X)E(μ)​=σ2E(X2)−μ2​=σ2E(X2)−[E(X)]2​=σ2D(X)​=σ2σ2​=1.​

X

=

X

μ

σ

X^*=\frac{X-\mu}{\sigma}

X∗=σX−μ​ 的数学期望为

0

0

0,方差为

1

1

1.

X

X^*

X∗称为

X

X

X的标准化变量 .

2. 方差性质

C

C

C是常数,则

D

(

C

)

=

0

D(C)=0

D(C)=0

证明:

D

(

C

)

=

E

[

C

E

(

C

)

]

2

=

E

(

C

2

)

[

E

(

C

)

]

2

=

C

2

C

2

=

0

D(C)=E[C-E(C)]^2 = E(C^2)-[E(C)]^2 = C^2-C^2 = 0

D(C)=E[C−E(C)]2=E(C2)−[E(C)]2=C2−C2=0

根据方差的定义,方差表示随机变量和期望的偏离程度,随机变量恒为一个常数,很明显,不存在偏离,因此

D

(

C

)

=

0.

D(C)=0.

D(C)=0.

X

X

X是随机变量,

C

C

C是常数,则有

1

o

D

(

C

X

)

=

C

2

D

(

X

)

1^o \quad D(CX)=C^2D(X)

1oD(CX)=C2D(X)

证明:

D

(

C

X

)

=

E

(

C

2

X

2

)

[

E

(

C

X

)

]

2

=

C

2

E

(

X

2

)

C

2

[

E

(

X

)

]

2

=

C

2

{

E

(

X

2

)

[

E

(

X

)

]

2

}

=

C

2

D

(

X

)

D(CX)=E(C^2X^2)-[E(CX)]^2 = C^2E(X^2)-C^2[E(X)]^2 = C^2\{E(X^2)-[E(X)]^2\}=C^2D(X)

D(CX)=E(C2X2)−[E(CX)]2=C2E(X2)−C2[E(X)]2=C2{E(X2)−[E(X)]2}=C2D(X)

2

o

D

(

X

+

C

)

=

D

(

X

)

2^o \quad D(X+C) = D(X)

2oD(X+C)=D(X)

证明:

D

(

X

+

C

)

=

E

[

(

C

+

X

)

2

]

[

E

(

C

+

X

)

]

2

=

E

[

C

2

+

2

C

X

+

X

2

]

[

E

(

C

)

+

E

(

X

)

]

2

=

E

(

C

2

)

+

2

E

(

C

)

E

(

X

)

+

E

(

X

2

)

[

E

(

C

)

]

2

2

E

(

C

)

E

(

X

)

[

E

(

X

)

]

2

=

E

(

X

2

)

[

E

(

X

)

]

2

=

D

(

X

)

\begin{aligned} D(X+C)&=E[(C+X)^2]-[E(C+X)]^2 = E[C^2+2CX+X^2]-[E(C)+E(X)]^2 = E(C^2)+2E(C)E(X)+E(X^2)-[E(C)]^2-2E(C)E(X)-[E(X)]^2\\&=E(X^2)-[E(X)]^2\\&= D(X) \end{aligned}

D(X+C)​=E[(C+X)2]−[E(C+X)]2=E[C2+2CX+X2]−[E(C)+E(X)]2=E(C2)+2E(C)E(X)+E(X2)−[E(C)]2−2E(C)E(X)−[E(X)]2=E(X2)−[E(X)]2=D(X)​

X

,

Y

X,Y

X,Y 是两个随机变量,则有

D

(

X

+

Y

)

=

D

(

X

)

+

D

(

Y

)

+

2

E

{

[

X

E

(

X

)

]

[

Y

E

(

Y

)

]

}

.

D(X+Y)=D(X)+D(Y)+2E\{[X-E(X)][Y-E(Y)]\}.

D(X+Y)=D(X)+D(Y)+2E{[X−E(X)][Y−E(Y)]}.

证明:

D

(

X

+

Y

)

=

E

[

(

X

+

Y

)

E

(

X

+

Y

)

]

2

=

E

{

[

X

E

(

X

)

]

+

[

Y

E

(

Y

)

]

}

2

=

E

[

X

E

(

X

)

]

2

+

E

[

Y

E

(

Y

)

]

2

+

2

E

{

[

X

E

(

X

)

]

[

Y

E

(

Y

)

]

}

=

D

(

X

)

+

D

(

Y

)

+

2

E

{

[

X

E

(

X

)

]

[

Y

E

(

Y

)

]

}

\quad\begin{aligned} D(X+Y) &= E[(X+Y)-E(X+Y)]^2 = E\{[X-E(X)]+[Y-E(Y)]\}^2 \\&=E[X-E(X)]^2+E[Y-E(Y)]^2+2E\{[X-E(X)][Y-E(Y)]\} \\&=D(X)+D(Y)+2E\{[X-E(X)][Y-E(Y)]\} \end{aligned}

D(X+Y)​=E[(X+Y)−E(X+Y)]2=E{[X−E(X)]+[Y−E(Y)]}2=E[X−E(X)]2+E[Y−E(Y)]2+2E{[X−E(X)][Y−E(Y)]}=D(X)+D(Y)+2E{[X−E(X)][Y−E(Y)]}​

特别,若

X

,

Y

X,Y

X,Y相互独立,则有

D

(

X

+

Y

)

=

D

(

X

)

+

D

(

Y

)

D(X+Y)=D(X)+D(Y)

D(X+Y)=D(X)+D(Y)

证明 :

D

(

X

+

Y

)

=

E

(

X

+

Y

)

2

[

E

(

X

+

Y

)

]

2

=

E

(

X

2

+

Y

2

+

2

X

Y

)

[

E

(

X

)

+

E

(

Y

)

]

2

=

E

(

X

2

)

+

E

(

Y

2

)

+

2

E

(

X

Y

)

[

E

(

X

)

]

2

[

E

(

Y

)

]

2

2

E

(

X

)

E

(

Y

)

(

1

)

=

D

(

X

)

+

D

(

Y

)

+

2

[

E

(

X

Y

)

E

(

X

)

E

(

Y

)

)

]

X

,

Y

E

(

X

Y

)

=

E

(

X

)

E

(

Y

)

=

D

(

X

)

+

D

(

Y

)

\quad\begin{aligned} D(X+Y) &= E(X+Y)^2-[E(X+Y)]^2 = E(X^2+Y^2+2XY) - [E(X)+E(Y)]^2 \\&=E(X^2)+E(Y^2)+2E(XY)-[E(X)]^2-[E(Y)]^2-2E(X)E(Y) \quad (1) \\&=D(X)+D(Y) + 2[E(XY)-E(X)E(Y))] \\&\because X,Y 相互独立,\quad \therefore E(XY) = E(X)E(Y)\\ &=D(X)+D(Y) \end{aligned}

D(X+Y)​=E(X+Y)2−[E(X+Y)]2=E(X2+Y2+2XY)−[E(X)+E(Y)]2=E(X2)+E(Y2)+2E(XY)−[E(X)]2−[E(Y)]2−2E(X)E(Y)(1)=D(X)+D(Y)+2[E(XY)−E(X)E(Y))]∵X,Y相互独立,∴E(XY)=E(X)E(Y)=D(X)+D(Y)​

这一性质可以推广到任意有限多个相互独立的随机变量之和的情况。

D

(

X

)

=

0

D(X)=0

D(X)=0的充要条件是

X

X

X以概率

1

1

1取常数

E

(

X

)

E(X)

E(X),即

P

{

X

=

E

(

X

)

}

=

1.

P\{X=E(X)\}=1.

P{X=E(X)}=1.

证明:

充分性,已知

P

{

X

=

E

(

X

)

}

=

1

P\{X=E(X)\}=1

P{X=E(X)}=1 ,则

P

{

X

2

=

[

E

(

X

)

]

2

}

=

1

E

(

X

2

)

=

E

[

E

(

X

)

]

2

=

[

E

(

X

)

]

2

D

(

X

)

=

E

(

X

2

)

[

E

(

X

)

]

2

=

0

P\{X^2=[E(X)]^2\}=1 \quad \therefore E(X^2) = E[E(X)]^2 = [E(X)]^2 \quad \therefore D(X) = E(X^2)-[E(X)]^2 = 0

P{X2=[E(X)]2}=1∴E(X2)=E[E(X)]2=[E(X)]2∴D(X)=E(X2)−[E(X)]2=0

注意,这里不能根据

P

{

X

=

E

(

X

)

}

=

1

P\{X=E(X)\}=1

P{X=E(X)}=1 判定随机变量X为一个常数

C

C

C, 原因是离散型可以得出这个结论,但是对于连续型,其选中有限个点之后,剩余的点的概率仍为1,但是这部分被选中的点的取值,不一定为该常数

C

C

C。

必要性,已知

D

(

X

)

=

0

D(X)=0

D(X)=0 ,要证明

P

{

X

=

E

(

X

)

}

=

1

P\{X=E(X)\}=1

P{X=E(X)}=1 ,利用反证法,证明如下:

假设

P

{

X

=

E

(

X

)

}

<

1

P\{X=E(X)\}<1

P{X=E(X)}<1,则对于某一个数

ϵ

>

0

\epsilon>0

ϵ>0,有

P

{

X

E

(

X

)

ϵ

}

>

0

P\{|X-E(X)|\geq\epsilon\}>0

P{∣X−E(X)∣≥ϵ}>0 ,由切比雪夫不等式,对于任意的

ϵ

>

0

\epsilon>0

ϵ>0,有

P

{

X

E

(

X

)

ϵ

}

D

(

X

)

ϵ

=

0

P\{|X-E(X)|\geq\epsilon\}\leq \frac{D(X)}{\epsilon}=0

P{∣X−E(X)∣≥ϵ}≤ϵD(X)​=0 与假设矛盾,

P

{

X

=

E

(

X

)

}

=

1

\therefore P\{X=E(X)\}=1

∴P{X=E(X)}=1

3. 常见随机变量分布的方差

关于不同分布的数学期望计算与推导,在文章数学期望及常见分布的期望计算与推导中已经给出,这里不再重复证明,直接拿来使用。

3.1

(

0

1

)

(0-1)

(0−1)分布

随机变量

X

X

X服从

(

0

1

)

(0-1)

(0−1)分布,则其分布律为

P

{

X

=

k

}

=

p

k

(

1

p

)

1

k

,

k

=

0

,

1

P\{X=k\} = p^k(1-p)^{1-k}, \quad k=0,1

P{X=k}=pk(1−p)1−k,k=0,1

此时有

D

(

X

)

=

p

(

1

p

)

D(X)=p(1-p)

D(X)=p(1−p) .

证明:

E

(

X

)

=

p

\quad E(X)=p

E(X)=p

E

(

X

2

)

=

k

=

0

1

x

k

2

p

k

=

0

2

p

0

(

1

p

)

1

0

+

1

2

p

1

(

1

p

)

1

1

=

p

\quad E(X^2)=\sum\limits_{k=0}^{1}x_k^2p_k = 0^2\cdot p^0(1-p)^{1-0}+1^2\cdot p^1(1-p)^{1-1} = p

E(X2)=k=0∑1​xk2​pk​=02⋅p0(1−p)1−0+12⋅p1(1−p)1−1=p

D

(

X

)

=

E

(

X

2

)

[

E

(

X

)

]

2

=

p

p

2

=

p

(

1

p

)

\quad \therefore D(X) = E(X^2)-[E(X)]^2 = p-p^2=p(1-p)

∴D(X)=E(X2)−[E(X)]2=p−p2=p(1−p)

3.2 二项分布

X

b

(

n

,

p

)

X\sim b(n,p)

X∼b(n,p) ,则其分布律为

P

{

X

=

k

}

=

(

k

n

)

p

k

q

n

k

k

=

0

,

1

,

2

,

n

P\{X=k\} = \left(_k^n\right)p^kq^{n-k} \quad k=0,1,2\cdots, n

P{X=k}=(kn​)pkqn−kk=0,1,2⋯,n ,此时有

D

(

X

)

=

n

p

(

1

p

)

.

D(X)=np(1-p).

D(X)=np(1−p).

证明:

E

(

X

)

=

n

p

\quad E(X) =np

E(X)=np

E

(

X

2

)

=

k

=

0

n

k

2

(

k

n

)

p

k

q

n

k

=

k

=

0

n

k

2

n

!

k

!

(

n

k

)

!

p

k

q

n

k

=

k

=

1

n

k

n

!

(

k

1

)

!

(

n

k

)

!

p

k

q

n

k

=

k

=

1

n

(

k

1

)

n

!

(

k

1

)

!

(

n

k

)

!

p

k

q

n

k

+

k

=

1

n

n

!

(

k

1

)

!

(

n

k

)

!

p

k

q

n

k

=

k

=

2

n

n

!

(

k

2

)

!

(

n

k

)

!

p

k

q

n

k

+

n

p

k

1

=

0

n

1

(

n

1

)

!

(

k

1

)

!

(

n

k

)

!

p

k

1

q

n

k

=

n

(

n

1

)

p

2

k

2

=

0

n

2

(

n

2

)

!

(

k

2

)

!

(

n

k

)

!

p

k

2

q

n

k

+

n

p

(

p

+

q

)

n

1

=

(

n

2

p

2

n

p

2

)

(

p

+

q

)

n

2

+

n

p

=

n

2

p

2

n

p

2

+

n

p

\quad\begin{aligned}E(X^2) &= \sum\limits_{k=0}^{n}k^2(_k^n)p^kq^{n-k} =\sum\limits_{k=0}^{n}k^2\frac{n!}{k!(n-k)!}p^kq^{n-k}\\& = \sum\limits_{k=1}^{n}k\frac{n!}{(k-1)!(n-k)!}p^kq^{n-k}\\&= \sum\limits_{k=1}^{n}(k-1)\frac{n!}{(k-1)!(n-k)!}p^kq^{n-k}+\sum\limits_{k=1}^{n}\frac{n!}{(k-1)!(n-k)!}p^kq^{n-k} \\& = \sum\limits_{k=2}^{n}\frac{n!}{(k-2)!(n-k)!}p^kq^{n-k}+np\sum\limits_{k-1=0}^{n-1}\frac{(n-1)!}{(k-1)!(n-k)!}p^{k-1}q^{n-k} \\&= n(n-1)p^2\sum\limits_{k-2=0}^{n-2}\frac{(n-2)!}{(k-2)!(n-k)!}p^{k-2}q^{n-k}+np(p+q)^{n-1} \\&=(n^2p^2-np^2)(p+q)^{n-2}+np \\&=n^2p^2-np^2+np\end{aligned}

E(X2)​=k=0∑n​k2(kn​)pkqn−k=k=0∑n​k2k!(n−k)!n!​pkqn−k=k=1∑n​k(k−1)!(n−k)!n!​pkqn−k=k=1∑n​(k−1)(k−1)!(n−k)!n!​pkqn−k+k=1∑n​(k−1)!(n−k)!n!​pkqn−k=k=2∑n​(k−2)!(n−k)!n!​pkqn−k+npk−1=0∑n−1​(k−1)!(n−k)!(n−1)!​pk−1qn−k=n(n−1)p2k−2=0∑n−2​(k−2)!(n−k)!(n−2)!​pk−2qn−k+np(p+q)n−1=(n2p2−np2)(p+q)n−2+np=n2p2−np2+np​

D

(

X

)

=

E

(

X

2

)

[

E

(

X

)

]

2

=

(

n

2

p

2

n

p

2

+

n

p

)

(

n

p

)

2

=

n

p

n

p

2

=

n

p

(

1

p

)

\quad \therefore D(X) = E(X^2)-[E(X)]^2 = (n^2p^2-np^2+np)-(np)^2 = np-np^2 = np(1-p)

∴D(X)=E(X2)−[E(X)]2=(n2p2−np2+np)−(np)2=np−np2=np(1−p)

3.3 泊松分布

X

π

(

λ

)

X\sim \pi(\lambda)

X∼π(λ) ,则其分布律为

P

{

X

=

k

}

=

λ

k

k

!

e

λ

k

=

0

,

1

,

2

,

P\{X=k\} = \frac{\lambda^k}{k!}e^{-\lambda} \quad k=0,1,2,\cdots

P{X=k}=k!λk​e−λk=0,1,2,⋯ ,此时有

D

(

X

)

=

λ

.

D(X)=\lambda.

D(X)=λ.

证明:

E

(

X

)

=

λ

\quad E(X) = \lambda

E(X)=λ

E

(

X

2

)

=

k

=

0

k

2

λ

k

k

!

e

λ

=

k

=

1

k

λ

k

(

k

1

)

!

e

λ

=

k

=

1

(

k

1

)

λ

k

(

k

1

)

!

e

λ

+

k

=

1

λ

k

(

k

1

)

!

e

λ

=

λ

2

k

=

2

λ

k

2

(

k

2

)

!

e

λ

+

λ

k

=

1

λ

k

1

(

k

1

)

!

e

λ

=

λ

2

+

λ

\quad\begin{aligned}E(X^2) &= \sum\limits_{k=0}^{\infty}k^2\frac{\lambda^k}{k!}e^{-\lambda} = \sum\limits_{k=1}^{\infty}k\frac{\lambda^k}{(k-1)!}e^{-\lambda}\\&=\sum\limits_{k=1}^{\infty}(k-1)\frac{\lambda^k}{(k-1)!}e^{-\lambda}+\sum\limits_{k=1}^{\infty}\frac{\lambda^k}{(k-1)!}e^{-\lambda}\\&= \lambda^2\sum\limits_{k=2}^{\infty}\frac{\lambda^{k-2}}{(k-2)!}e^{-\lambda} + \lambda\sum\limits_{k=1}^{\infty}\frac{\lambda^{k-1}}{(k-1)!}e^{-\lambda} \\&= \lambda^2+\lambda \quad \end{aligned}\quad

E(X2)​=k=0∑∞​k2k!λk​e−λ=k=1∑∞​k(k−1)!λk​e−λ=k=1∑∞​(k−1)(k−1)!λk​e−λ+k=1∑∞​(k−1)!λk​e−λ=λ2k=2∑∞​(k−2)!λk−2​e−λ+λk=1∑∞​(k−1)!λk−1​e−λ=λ2+λ​

D

(

X

)

=

E

(

X

2

)

[

E

(

X

)

]

2

=

(

λ

2

+

λ

)

(

λ

)

2

=

λ

\quad \therefore D(X) = E(X^2)-[E(X)]^2 = (\lambda^2+\lambda)-(\lambda)^2 = \lambda

∴D(X)=E(X2)−[E(X)]2=(λ2+λ)−(λ)2=λ

3.4 几何分布

X

G

(

p

)

X\sim G(p)

X∼G(p) ,则其分布律为

P

{

X

=

k

}

=

(

1

p

)

k

1

p

k

=

1

,

2

,

3

,

P\{X=k\} = (1-p)^{k-1}p \quad k = 1,2,3,\cdots

P{X=k}=(1−p)k−1pk=1,2,3,⋯ ,此时有

D

(

X

)

=

1

p

p

2

.

D(X)=\frac{1-p}{p^2}.

D(X)=p21−p​.

证明:

E

(

X

)

=

1

p

\quad E(X) = \frac{1}{p}

E(X)=p1​

E

(

X

2

)

=

k

=

1

k

2

(

1

p

)

k

1

p

=

p

k

=

1

k

2

(

1

p

)

k

1

\quad\begin{aligned} &E(X^2) = \sum\limits_{k=1}^{\infty}k^2(1-p)^{k-1}p = p\sum\limits_{k=1}^{\infty}k^2(1-p)^{k-1} \end{aligned}

​E(X2)=k=1∑∞​k2(1−p)k−1p=pk=1∑∞​k2(1−p)k−1​

\quad

我们在计算几何分布的数学期望时,引入了一个求导技巧,即

0

<

x

<

1

k

k

=

1

k

x

k

1

=

(

k

=

1

x

k

)

=

(

x

1

x

)

=

1

(

1

x

)

2

x

=

1

p

x

k

=

1

k

x

k

1

=

x

1

(

1

x

)

2

k

=

1

k

x

k

=

x

1

(

1

x

)

2

k

=

1

k

2

x

k

1

=

(

k

=

1

k

x

k

)

=

[

x

(

1

x

)

2

]

=

1

+

x

(

1

x

)

3

\quad当0

当0

E

(

X

2

)

=

p

k

=

1

k

2

(

1

p

)

k

1

=

p

1

+

1

p

[

1

(

1

p

)

]

3

=

2

p

p

2

\quad\therefore E(X^2) = p\sum\limits_{k=1}^{\infty}k^2(1-p)^{k-1} = p\frac{1+1-p}{[1-(1-p)]^3} = \frac{2-p}{p^2}

∴E(X2)=pk=1∑∞​k2(1−p)k−1=p[1−(1−p)]31+1−p​=p22−p​

D

(

X

)

=

E

(

X

2

)

[

E

(

X

)

]

2

=

2

p

p

2

(

1

p

)

2

=

1

p

p

2

.

\quad\therefore D(X) = E(X^2)-[E(X)]^2 = \frac{2-p}{p^2}-(\frac{1}{p})^2 = \frac{1-p}{p^2}.

∴D(X)=E(X2)−[E(X)]2=p22−p​−(p1​)2=p21−p​.

3.5 超几何分布

X

H

(

n

,

M

,

N

)

X\sim H(n,M,N)

X∼H(n,M,N) ,则其分布律为

P

{

X

=

k

}

=

(

k

M

)

(

n

k

N

M

)

(

n

N

)

k

=

0

,

1

,

,

m

i

n

{

n

,

M

}

.

P\{X=k\} = \frac{(_k^M)(_{n-k}^{N-M})}{(_n^N)} \quad k= 0,1,\cdots,min\{n,M\}.

P{X=k}=(nN​)(kM​)(n−kN−M​)​k=0,1,⋯,min{n,M}. ,此时有

D

(

X

)

=

n

M

N

(

1

M

N

)

(

N

n

N

1

)

.

D(X)=n\frac{M}{N}(1-\frac{M}{N})(\frac{N-n}{N-1}).

D(X)=nNM​(1−NM​)(N−1N−n​).

证明:

E

(

X

)

=

n

M

N

\quad E(X) = n\frac{M}{N}

E(X)=nNM​

E

(

X

2

)

=

k

=

0

m

i

n

{

n

,

M

}

k

2

(

k

M

)

(

n

k

N

M

)

(

n

N

)

=

k

=

0

m

i

n

{

n

,

M

}

k

2

M

!

k

!

(

M

k

)

!

(

n

k

N

M

)

n

!

(

N

n

)

!

N

!

=

k

=

1

m

i

n

{

n

,

M

}

k

M

!

(

k

1

)

!

(

M

k

)

!

(

n

k

N

M

)

n

!

(

N

n

)

!

N

!

=

k

=

1

m

i

n

{

n

,

M

}

(

k

1

)

M

!

(

k

1

)

!

(

M

k

)

!

(

n

k

N

M

)

n

!

(

N

n

)

!

N

!

+

k

=

1

m

i

n

{

n

,

M

}

M

!

(

k

1

)

!

(

M

k

)

!

(

n

k

N

M

)

n

!

(

N

n

)

!

N

!

=

k

=

2

m

i

n

{

n

,

M

}

M

(

M

1

)

(

M

2

)

!

(

k

2

)

!

(

M

k

)

!

(

n

k

N

M

)

n

!

(

N

n

)

!

N

!

+

k

=

0

m

i

n

{

n

,

M

}

k

M

!

k

!

(

M

k

)

!

(

n

k

N

M

)

n

!

(

N

n

)

!

N

!

=

M

(

M

1

)

n

!

(

N

n

)

!

N

!

k

=

2

m

i

n

{

n

,

M

}

(

k

2

M

2

)

(

n

k

N

M

)

+

E

(

X

)

=

M

(

M

1

)

n

!

(

N

n

)

!

N

!

(

n

2

N

2

)

+

n

M

N

(

C

m

+

n

k

=

i

=

0

k

C

m

i

C

n

k

i

)

=

M

(

M

1

)

n

(

n

1

)

N

(

N

1

)

+

n

M

N

=

n

M

N

[

(

M

1

)

(

n

1

)

N

1

+

1

]

\quad\begin{aligned} E(X^2) &= \sum\limits_{k=0}^{min\{n,M\}}k^2\frac{(_k^M)(_{n-k}^{N-M})}{(_n^N)} \\&=\sum\limits_{k=0}^{min\{n,M\}}k^2\frac{M!}{k!(M-k)!}(_{n-k}^{N-M})\frac{n!(N-n)!}{N!} \\&=\sum\limits_{k=1}^{min\{n,M\}}k\frac{M!}{(k-1)!(M-k)!}(_{n-k}^{N-M})\frac{n!(N-n)!}{N!}\\ &=\sum\limits_{k=1}^{min\{n,M\}}(k-1)\frac{M!}{(k-1)!(M-k)!}(_{n-k}^{N-M})\frac{n!(N-n)!}{N!}+\sum\limits_{k=1}^{min\{n,M\}}\frac{M!}{(k-1)!(M-k)!}(_{n-k}^{N-M})\frac{n!(N-n)!}{N!}\\&=\sum\limits_{k=2}^{min\{n,M\}}\frac{M(M-1)(M-2)!}{(k-2)!(M-k)!}(_{n-k}^{N-M})\frac{n!(N-n)!}{N!}+\sum\limits_{k=0}^{min\{n,M\}}k\frac{M!}{k!(M-k)!}(_{n-k}^{N-M})\frac{n!(N-n)!}{N!} \\&=M(M-1)\frac{n!(N-n)!}{N!}\sum\limits_{k=2}^{min\{n,M\}}(_{k-2}^{M-2})(_{n-k}^{N-M})+E(X)\\&=M(M-1)\frac{n!(N-n)!}{N!}(_{n-2}^{N-2})+n\frac{M}{N} \quad (范德蒙恒等式C_{m+n}^k = \sum\limits_{i=0}^{k}C_{m}^iC_{n}^{k-i})\\&=M(M-1)\frac{n(n-1)}{N(N-1)}+n\frac{M}{N} \\&=n\frac{M}{N}[\frac{(M-1)(n-1)}{N-1}+1] \end{aligned}

E(X2)​=k=0∑min{n,M}​k2(nN​)(kM​)(n−kN−M​)​=k=0∑min{n,M}​k2k!(M−k)!M!​(n−kN−M​)N!n!(N−n)!​=k=1∑min{n,M}​k(k−1)!(M−k)!M!​(n−kN−M​)N!n!(N−n)!​=k=1∑min{n,M}​(k−1)(k−1)!(M−k)!M!​(n−kN−M​)N!n!(N−n)!​+k=1∑min{n,M}​(k−1)!(M−k)!M!​(n−kN−M​)N!n!(N−n)!​=k=2∑min{n,M}​(k−2)!(M−k)!M(M−1)(M−2)!​(n−kN−M​)N!n!(N−n)!​+k=0∑min{n,M}​kk!(M−k)!M!​(n−kN−M​)N!n!(N−n)!​=M(M−1)N!n!(N−n)!​k=2∑min{n,M}​(k−2M−2​)(n−kN−M​)+E(X)=M(M−1)N!n!(N−n)!​(n−2N−2​)+nNM​(范德蒙恒等式Cm+nk​=i=0∑k​Cmi​Cnk−i​)=M(M−1)N(N−1)n(n−1)​+nNM​=nNM​[N−1(M−1)(n−1)​+1]​

D

(

X

)

=

E

(

X

2

)

[

E

(

X

)

]

2

=

n

M

N

[

(

M

1

)

(

n

1

)

N

1

+

1

]

(

n

M

N

)

2

=

n

M

N

(

M

n

M

n

+

1

+

N

1

N

1

n

M

N

)

=

n

M

N

[

M

N

n

M

N

N

n

+

N

2

M

N

n

+

M

n

N

(

N

1

)

]

=

n

M

N

[

N

(

N

M

)

n

(

N

M

)

N

(

N

1

)

]

=

n

M

N

[

(

N

M

)

(

N

n

)

N

(

N

1

)

]

=

n

M

N

(

1

M

N

)

(

N

n

N

1

)

.

\quad\begin{aligned} \therefore D(X) &= E(X^2)-[E(X)]^2 = n\frac{M}{N}[\frac{(M-1)(n-1)}{N-1}+1]-(n\frac{M}{N})^2 = n\frac{M}{N}(\frac{Mn-M-n+1+N-1}{N-1}-n\frac{M}{N})\\ &= n\frac{M}{N}\bigg[\frac{MNn-MN-Nn+N^2-MNn+Mn}{N(N-1)}\bigg] \\&= n\frac{M}{N}\bigg[\frac{N(N-M)-n(N-M)}{N(N-1)}\bigg] = n\frac{M}{N}\bigg[\frac{(N-M)(N-n)}{N(N-1)}\bigg]\\&= n\frac{M}{N}(1-\frac{M}{N})(\frac{N-n}{N-1}). \end{aligned}

∴D(X)​=E(X2)−[E(X)]2=nNM​[N−1(M−1)(n−1)​+1]−(nNM​)2=nNM​(N−1Mn−M−n+1+N−1​−nNM​)=nNM​[N(N−1)MNn−MN−Nn+N2−MNn+Mn​]=nNM​[N(N−1)N(N−M)−n(N−M)​]=nNM​[N(N−1)(N−M)(N−n)​]=nNM​(1−NM​)(N−1N−n​).​

3.6 均匀分布

X

U

(

a

,

b

)

X\sim U(a,b)

X∼U(a,b) ,则其概率密度为

f

(

x

)

=

{

1

b

a

,

a

<

x

<

b

0

,

e

l

s

e

.

f(x)=\begin{cases} \frac{1}{b-a},\quad a

f(x)={b−a1​,a

D

(

X

)

=

(

b

a

)

2

12

.

D(X)=\frac{(b-a)^2}{12}.

D(X)=12(b−a)2​.

证明:

E

(

X

)

=

a

+

b

2

\quad E(X) = \frac{a+b}{2}

E(X)=2a+b​

E

(

X

2

)

=

+

x

2

f

(

x

)

d

x

=

a

x

2

0

d

x

+

a

b

x

2

1

b

a

d

x

+

b

+

x

2

0

d

x

=

0

+

(

1

3

1

b

a

x

3

)

a

b

+

0

=

b

3

a

3

3

(

b

a

)

=

a

2

+

b

2

+

a

b

3

\quad\begin{aligned} E(X^2) &= \int_{-\infty}^{+\infty}x^2f(x)dx = \int_{-\infty}^{a}x^2\cdot0dx+\int_{a}^{b}x^2\frac{1}{b-a}dx+\int_{b}^{+\infty}x^2\cdot0dx\\&=0+(\frac{1}{3}\frac{1}{b-a}x^3)\bigg|_a^b+0 \\&=\frac{b^3-a^3}{3(b-a)} = \frac{a^2+b^2+ab}{3}\end{aligned}

E(X2)​=∫−∞+∞​x2f(x)dx=∫−∞a​x2⋅0dx+∫ab​x2b−a1​dx+∫b+∞​x2⋅0dx=0+(31​b−a1​x3)∣∣∣∣​ab​+0=3(b−a)b3−a3​=3a2+b2+ab​​

D

(

X

)

=

E

(

X

2

)

[

E

(

X

)

]

2

=

a

2

+

b

2

+

a

b

3

(

a

+

b

2

)

2

=

(

b

a

)

2

12

.

\therefore D(X) = E(X^2)-[E(X)]^2 = \frac{a^2+b^2+ab}{3}-(\frac{a+b}{2})^2 = \frac{(b-a)^2}{12}.

∴D(X)=E(X2)−[E(X)]2=3a2+b2+ab​−(2a+b​)2=12(b−a)2​.

3.7 指数分布

X

E

(

θ

)

X\sim E(\theta)

X∼E(θ) ,则其概率密度为

f

(

x

)

=

{

1

θ

e

x

/

θ

,

0

<

x

0

,

e

l

s

e

(

θ

>

0

)

.

f(x)=\begin{cases} \frac{1}{\theta}e^{-x/\theta},\quad 00).

f(x)={θ1​e−x/θ,00). ,此时有

D

(

X

)

=

θ

2

.

D(X)=\theta^2.

D(X)=θ2.

证明:

E

(

X

)

=

θ

\quad E(X) = \theta

E(X)=θ

E

(

X

2

)

=

+

x

2

f

(

x

)

d

x

=

0

x

2

0

d

x

+

0

+

x

2

1

θ

e

x

/

θ

d

x

=

0

+

(

x

2

e

x

/

θ

)

0

+

0

+

2

x

e

x

/

θ

d

x

=

2

0

+

x

e

x

/

θ

d

x

(

)

=

2

[

(

x

θ

e

x

/

θ

)

0

+

)

]

2

0

+

θ

e

x

/

θ

d

x

=

2

θ

2

0

+

1

θ

e

x

/

θ

d

x

=

2

θ

2

(

0

+

1

θ

e

x

/

θ

d

x

=

F

(

)

F

(

0

)

=

1

)

\quad \begin{aligned} E(X^2) &= \int_{-\infty}^{+\infty}x^2f(x)dx = \int_{-\infty}^{0}x^2\cdot0dx+\int_{0}^{+\infty}x^2\frac{1}{\theta}e^{-x/\theta}dx\\&=0+(-x^2e^{-x/\theta})\bigg|_0^{+\infty} -\int_{0}^{+\infty}-2xe^{-x/\theta}dx =2\int_{0}^{+\infty}xe^{-x/\theta}dx\quad (分部积分法)\\&=2\bigg[(-x\theta e^{-x/\theta})\bigg|_0^{+\infty})\bigg]-2\int_{0}^{+\infty}-\theta e^{-x/\theta}dx = 2\theta^2\int_{0}^{+\infty}\frac{1}{\theta} e^{-x/\theta}dx \\&= 2\theta^2 \quad (积分项 \int_{0}^{+\infty}\frac{1}{\theta} e^{-x/\theta}dx = F(\infty)-F(0) = 1)\end{aligned}

E(X2)​=∫−∞+∞​x2f(x)dx=∫−∞0​x2⋅0dx+∫0+∞​x2θ1​e−x/θdx=0+(−x2e−x/θ)∣∣∣∣​0+∞​−∫0+∞​−2xe−x/θdx=2∫0+∞​xe−x/θdx(分部积分法)=2[(−xθe−x/θ)∣∣∣∣​0+∞​)]−2∫0+∞​−θe−x/θdx=2θ2∫0+∞​θ1​e−x/θdx=2θ2(积分项∫0+∞​θ1​e−x/θdx=F(∞)−F(0)=1)​

D

(

X

)

=

E

(

X

2

)

[

E

(

X

)

]

2

=

2

θ

2

(

θ

)

2

=

θ

2

.

\quad \therefore D(X) = E(X^2)-[E(X)]^2 = 2\theta^2 -(\theta)^2 = \theta^2.

∴D(X)=E(X2)−[E(X)]2=2θ2−(θ)2=θ2.

3.8 正态分布

X

N

(

μ

,

σ

2

)

X\sim N(\mu,\sigma^2)

X∼N(μ,σ2) ,则其概率密度为

f

(

x

)

=

1

2

π

σ

e

(

x

μ

)

2

2

σ

2

,

<

x

<

+

.

f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} , \quad -\infty

f(x)=2π

​σ1​e−2σ2(x−μ)2​,−∞

D

(

X

)

=

σ

2

.

D(X)=\sigma^2.

D(X)=σ2.

证明:

E

(

X

)

=

μ

\quad E(X) = \mu

E(X)=μ

E

(

X

2

)

=

+

x

2

f

(

x

)

d

x

=

+

x

2

1

2

π

σ

e

(

x

μ

)

2

2

σ

2

d

x

\quad \begin{aligned} E(X^2) &= \int_{-\infty}^{+\infty}x^2f(x)dx = \int_{-\infty}^{+\infty}x^2\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx \end{aligned}

E(X2)​=∫−∞+∞​x2f(x)dx=∫−∞+∞​x22π

​σ1​e−2σ2(x−μ)2​dx​

\quad

t

=

x

μ

σ

,

x

=

t

σ

+

μ

t = \frac{x-\mu}{\sigma},则 x = t\sigma+\mu

t=σx−μ​,则x=tσ+μ,另外我们还知道

+

e

t

2

2

d

t

=

2

π

\int_{-\infty}^{+\infty}e^{-\frac{t^2}{2}} dt=\sqrt{2\pi}

∫−∞+∞​e−2t2​dt=2π

​(连续型随机变量及其常见分布函数和概率密度 中有相关证明,不在赘述) ,则此时有

E

(

X

2

)

=

+

(

t

σ

+

μ

)

2

1

2

π

σ

e

t

2

2

σ

d

t

=

1

2

π

+

t

2

σ

2

e

t

2

2

d

t

+

1

2

π

+

2

t

σ

μ

e

t

2

2

d

t

+

1

2

π

+

μ

2

e

t

2

2

d

t

=

σ

2

2

π

+

t

2

e

t

2

2

d

t

+

2

σ

μ

2

π

+

t

e

t

2

2

d

t

+

μ

2

2

π

+

e

t

2

2

d

t

=

σ

2

2

π

[

(

t

e

t

2

2

)

+

+

e

t

2

2

d

t

]

+

2

σ

μ

2

π

[

e

t

2

2

]

+

+

μ

2

2

π

2

π

=

σ

2

2

π

+

e

t

2

2

d

t

+

0

+

μ

2

=

σ

2

2

π

2

π

+

μ

2

=

σ

2

+

μ

2

\quad\begin{aligned} E(X^2) & =\int_{-\infty}^{+\infty}(t\sigma+\mu)^2\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{t^2}{2}}\sigma dt \\&=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}t^2\sigma^2e^{-\frac{t^2}{2}}dt+\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}2t\sigma\mu e^{-\frac{t^2}{2}}dt+\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}\mu^2e^{-\frac{t^2}{2}}dt \\&=\frac{\sigma^2}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}t^2e^{-\frac{t^2}{2}}dt+\frac{2\sigma\mu}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}te^{-\frac{t^2}{2}}dt+\frac{\mu^2}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{-\frac{t^2}{2}}dt \\&= \frac{\sigma^2}{\sqrt{2\pi}}\bigg[(-te^{-\frac{t^2}{2}})\bigg|_{-\infty}^{+\infty}-\int_{-\infty}^{+\infty}-e^{-\frac{t^2}{2}}dt\bigg] + \frac{2\sigma\mu}{\sqrt{2\pi}}\bigg[-e^{-\frac{t^2}{2}}\bigg]\bigg|_{-\infty}^{+\infty}+ \frac{\mu^2}{\sqrt{2\pi}}\sqrt{2\pi}\\&=\frac{\sigma^2}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{-\frac{t^2}{2}}dt + 0 +\mu^2\\&=\frac{\sigma^2}{\sqrt{2\pi}}\sqrt{2\pi}+\mu^2\\&=\sigma^2+\mu^2\end{aligned}

E(X2)​=∫−∞+∞​(tσ+μ)22π

​σ1​e−2t2​σdt=2π

​1​∫−∞+∞​t2σ2e−2t2​dt+2π

​1​∫−∞+∞​2tσμe−2t2​dt+2π

​1​∫−∞+∞​μ2e−2t2​dt=2π

​σ2​∫−∞+∞​t2e−2t2​dt+2π

​2σμ​∫−∞+∞​te−2t2​dt+2π

​μ2​∫−∞+∞​e−2t2​dt=2π

​σ2​[(−te−2t2​)∣∣∣∣​−∞+∞​−∫−∞+∞​−e−2t2​dt]+2π

​2σμ​[−e−2t2​]∣∣∣∣​−∞+∞​+2π

​μ2​2π

​=2π

​σ2​∫−∞+∞​e−2t2​dt+0+μ2=2π

​σ2​2π

​+μ2=σ2+μ2​

D

(

X

)

=

E

(

X

2

)

[

E

(

X

)

]

2

=

σ

2

+

μ

2

(

μ

)

2

=

σ

2

.

\quad\therefore D(X) = E(X^2)-[E(X)]^2 = \sigma^2+\mu^2 -(\mu)^2 = \sigma^2.

∴D(X)=E(X2)−[E(X)]2=σ2+μ2−(μ)2=σ2.

证明方法二:

\quad

随机变量

X

X

X进行 标准化,令

Z

=

X

μ

σ

Z = \frac{X-\mu}{\sigma}

Z=σX−μ​ , 此时有

f

(

z

)

=

1

2

π

e

x

2

2

f(z)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}

f(z)=2π

​1​e−2x2​ ,此时有

E

(

Z

)

=

0

\quad E(Z)=0

E(Z)=0

E

(

Z

2

)

=

+

z

2

f

(

z

)

d

z

=

+

z

2

1

2

π

e

x

2

2

=

1

2

π

[

(

z

e

z

2

2

)

+

+

e

z

2

2

d

z

]

=

1

2

π

2

π

=

1

\quad\begin{aligned} E(Z^2) &= \int_{-\infty}^{+\infty}z^2f(z)dz = \int_{-\infty}^{+\infty}z^2\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \\&= \frac{1}{\sqrt{2\pi}}\bigg[(-ze^{-\frac{z^2}{2}})\bigg|_{-\infty}^{+\infty}-\int_{-\infty}^{+\infty}-e^{-\frac{z^2}{2}}dz\bigg]\\&=\frac{1}{\sqrt{2\pi}}\sqrt{2\pi} \\&= 1 \end{aligned}

E(Z2)​=∫−∞+∞​z2f(z)dz=∫−∞+∞​z22π

​1​e−2x2​=2π

​1​[(−ze−2z2​)∣∣∣∣​−∞+∞​−∫−∞+∞​−e−2z2​dz]=2π

​1​2π

​=1​

D

(

Z

)

=

E

(

Z

2

)

[

E

(

Z

)

]

2

=

1

2

(

0

)

2

=

1.

D

(

X

μ

σ

)

=

1

σ

2

D

(

X

)

=

1

D

(

X

)

=

σ

2

\quad\begin{aligned}&\therefore D(Z) = E(Z^2)-[E(Z)]^2 = 1^2 -(0)^2 = 1. 即\\&D(\frac{X-\mu}{\sigma}) = \frac{1}{\sigma^2}D(X)=1\\&\therefore D(X)= \sigma^2\end{aligned}

​∴D(Z)=E(Z2)−[E(Z)]2=12−(0)2=1.即D(σX−μ​)=σ21​D(X)=1∴D(X)=σ2​

3.9 常见分布的方差和期望汇总表

分布参数分布律或概率密度数学期望方差

(

0

1

)

(0-1)

(0−1)分布

0

<

p

<

1

0

0

P

{

X

=

k

}

=

p

k

(

1

p

)

1

k

,

k

=

0

,

1

P\{X=k\} = p^k(1-p)^{1-k}, \quad k=0,1

P{X=k}=pk(1−p)1−k,k=0,1

p

p

p

p

(

1

p

)

p(1-p)

p(1−p)二项分布

X

b

(

n

,

p

)

X\sim b(n,p)

X∼b(n,p)

n

1

0

<

p

<

1

n\geq1\\0

n≥10

P

{

X

=

k

}

=

(

k

n

)

p

k

q

n

k

k

=

0

,

1

,

2

,

n

P\{X=k\} = \left(_k^n\right)p^kq^{n-k} \quad k=0,1,2\cdots, n

P{X=k}=(kn​)pkqn−kk=0,1,2⋯,n

n

p

np

np

n

p

(

1

p

)

np(1-p)

np(1−p)泊松分布

X

π

(

λ

)

X\sim \pi(\lambda)

X∼π(λ)

λ

>

0

\lambda>0

λ>0

P

{

X

=

k

}

=

λ

k

k

!

e

λ

k

=

0

,

1

,

2

,

P\{X=k\} = \frac{\lambda^k}{k!}e^{-\lambda} \quad k=0,1,2,\cdots

P{X=k}=k!λk​e−λk=0,1,2,⋯

λ

\lambda

λ

λ

\lambda

λ几何分布

X

G

(

p

)

X\sim G(p)

X∼G(p)

0

<

p

<

1

0

0

P

{

X

=

k

}

=

(

1

p

)

k

1

p

k

=

1

,

2

,

3

,

P\{X=k\} = (1-p)^{k-1}p \quad k = 1,2,3,\cdots

P{X=k}=(1−p)k−1pk=1,2,3,⋯

1

p

\frac{1}{p}

p1​

1

p

p

2

\frac{1-p}{p^2}

p21−p​超几何分布

X

H

(

n

,

M

,

N

)

X\sim H(n,M,N)

X∼H(n,M,N)

N

,

M

,

n

N

M

N

n

N,M,n\\N\geq M\\ N\geq n

N,M,nN≥MN≥n

P

{

X

=

k

}

=

(

k

M

)

(

n

k

N

M

)

(

n

N

)

k

=

0

,

1

,

,

m

i

n

{

n

,

M

}

.

P\{X=k\} = \frac{(_k^M)(_{n-k}^{N-M})}{(_n^N)} \quad k= 0,1,\cdots,min\{n,M\}.

P{X=k}=(nN​)(kM​)(n−kN−M​)​k=0,1,⋯,min{n,M}.

n

M

N

n\frac{M}{N}

nNM​

n

M

N

(

1

M

N

)

(

N

n

N

1

)

n\frac{M}{N}(1-\frac{M}{N})(\frac{N-n}{N-1})

nNM​(1−NM​)(N−1N−n​)均匀分布

X

U

(

a

,

b

)

X\sim U(a,b)

X∼U(a,b)

a

<

b

a

a

f

(

x

)

=

{

1

b

a

,

a

<

x

<

b

0

,

e

l

s

e

.

f(x)=\begin{cases} \frac{1}{b-a},\quad a

f(x)={b−a1​,a

a

+

b

2

\frac{a+b}{2}

2a+b​

(

b

a

)

2

12

\frac{(b-a)^2}{12}

12(b−a)2​指数分布

X

E

(

θ

)

X\sim E(\theta)

X∼E(θ)

θ

>

0

\theta>0

θ>0

f

(

x

)

=

{

1

θ

e

x

/

θ

,

0

<

x

0

,

e

l

s

e

.

f(x)=\begin{cases} \frac{1}{\theta}e^{-x/\theta},\quad 0

f(x)={θ1​e−x/θ,0

θ

\theta

θ

θ

2

\theta^2

θ2正态分布

X

N

(

μ

,

σ

2

)

X\sim N(\mu,\sigma^2)

X∼N(μ,σ2)

μ

σ

>

0

\mu\\\sigma>0

μσ>0

f

(

x

)

=

1

2

π

σ

e

(

x

μ

)

2

2

σ

2

,

<

x

<

+

.

f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} , \quad -\infty

f(x)=2π

​σ1​e−2σ2(x−μ)2​,−∞

μ

\mu

μ

σ

2

\sigma^2

σ2